
4 Machine Language

Make everything as simple as possible, but not simpler.

—Albert Einstein (1879–1955)

A computer can be described constructively, by laying out its hardware platform

and explaining how it is built from low-level chips. A computer can also be described

abstractly, by specifying and demonstrating its machine language capabilities. And

indeed, it is convenient to get acquainted with a new computer system by first seeing

some low-level programs written in its machine language. This helps us understand

not only how to program the computer to do useful things, but also why its hard-

ware was designed in a certain way. With that in mind, this chapter focuses on low-

level programming in machine language. This sets the stage for chapter 5, where we

complete the construction of a general-purpose computer designed to run machine

language programs. This computer will be constructed from the chip set built in

chapters 1–3.

A machine language is an agreed-upon formalism, designed to code low-level

programs as series of machine instructions. Using these instructions, the programmer

can command the processor to perform arithmetic and logic operations, fetch and

store values from and to the memory, move values from one register to another, test

Boolean conditions, and so on. As opposed to high-level languages, whose basic

design goals are generality and power of expression, the goal of machine language’s

design is direct execution in, and total control of, a given hardware platform. Of

course, generality, power, and elegance are still desired, but only to the extent that

they support the basic requirement of direct execution in hardware.

Machine language is the most profound interface in the overall computer

enterprise—the fine line where hardware and software meet. This is the point where

the abstract thoughts of the programmer, as manifested in symbolic instructions, are

turned into physical operations performed in silicon. Thus, machine language can

be construed as both a programming tool and an integral part of the hardware plat-

form. In fact, just as we say that the machine language is designed to exploit a given

hardware platform, we can say that the hardware platform is designed to fetch, in-

terpret, and execute instructions written in the given machine language.

The chapter begins with a general introduction to machine language program-

ming. Next, we give a detailed specification of the Hack machine language, covering

both its binary and its symbolic assembly versions. The project that ends the chapter

engages you in writing a couple of machine language programs. This project offers

a hands-on appreciation of low-level programming and prepares you for building the

computer itself in the next chapter.

Although most people will never write programs directly in machine language,

the study of low-level programming is a prerequisite to a complete understanding of

computer architectures. Also, it is rather fascinating to realize how the most sophis-

ticated software systems are, at bottom, long series of elementary instructions, each

specifying a very simple and primitive operation on the underlying hardware. As

usual, this understanding is best achieved constructively, by writing some low-level

code and running it directly on the hardware platform.

4.1 Background

This chapter is language-oriented. Therefore, we can abstract away most of the

details of the underlying hardware platform, deferring its description to the next

chapter. Indeed, to give a general description of machine languages, it is sufficient

to focus on three main abstractions only: a processor, a memory, and a set of

registers.

4.1.1 Machines

A machine language can be viewed as an agreed-upon formalism, designed to ma-

nipulate a memory using a processor and a set of registers.

Memory The term memory refers loosely to the collection of hardware devices that

store data and instructions in a computer. From the programmer’s standpoint, all

memories have the same structure: A continuous array of cells of some fixed width,

also called words or locations, each having a unique address. Hence, an individual

word (representing either a data item or an instruction) is specified by supplying its

58 Chapter 4

address. In what follows we will refer to such individual words using the equivalent

notation Memory[address], RAM[address], or M[address] for brevity.

Processor The processor, normally called Central Processing Unit or CPU, is a

device capable of performing a fixed set of elementary operations. These typically

include arithmetic and logic operations, memory access operations, and control (also

called branching) operations. The operands of these operations are binary values

that come from registers and selected memory locations. Likewise, the results of the

operations (the processor’s output) can be stored either in registers or in selected

memory locations.

Registers Memory access is a relatively slow operation, requiring long instruc-

tion formats (an address may require 32 bits). For this reason, most processors are

equipped with several registers, each capable of holding a single value. Located in the

processor’s immediate proximity, the registers serve as a high-speed local memory,

allowing the processor to manipulate data and instructions quickly. This setting

enables the programmer to minimize the use of memory access commands, thus

speeding up the program’s execution.

4.1.2 Languages

A machine language program is a series of coded instructions. For example, a typical

instruction in a 16-bit computer may be 1010001100011001. In order to figure out

what this instruction means, we have to know the rules of the game, namely, the in-

struction set of the underlying hardware platform. For example, the language may be

such that each instruction consists of four 4-bit fields: The left-most field codes a

CPU operation, and the remaining three fields represent the operation’s operands.

Thus the previous command may code the operation set R3 to R1þ R9, depending

of course on the hardware specification and the machine language syntax.

Since binary codes are rather cryptic, machine languages are normally specified

using both binary codes and symbolic mnemonics (a mnemonic is a symbolic label

whose name hints at what it stands for—in our case hardware elements and binary

operations). For example, the language designer can decide that the operation code

1010 will be represented by the mnemonic add and that the registers of the machine

will be symbolically referred to using the symbols R0, R1, R2, and so forth. Using

these conventions, one can specify machine language instructions either directly, as

1010001100011001, or symbolically, as, say, ADD R3,R1,R9.

59 Machine Language

Taking this symbolic abstraction one step further, we can allow ourselves not

only to read symbolic notation, but to actually write programs using symbolic com-

mands rather than binary instructions. Next, we can use a text processing program

to parse the symbolic commands into their underlying fields (mnemonics and oper-

ands), translate each field into its equivalent binary representation, and assemble the

resulting codes into binary machine instructions. The symbolic notation is called as-

sembly language, or simply assembly, and the program that translates from assembly

to binary is called assembler.

Since different computers vary in terms of CPU operations, number and type of

registers, and assembly syntax rules, there is a Tower of Babel of machine languages,

each with its own obscure syntax. Yet irrespective of this variety, all machine lan-

guages support similar sets of generic commands, which we now describe.

4.1.3 Commands

Arithmetic and Logic Operations Every computer is required to perform basic

arithmetic operations like addition and subtraction as well as basic Boolean oper-

ations like bit-wise negation, bit shifting, and so forth. Here are some examples,

written in typical machine language syntax:

ADD R2,R1,R3 // R2<---R1+R3 where R1,R2,R3 are registers

ADD R2,R1,foo // R2<---R1+foo where foo stands for the

// value of the memory location pointed

// at by the user-defined label foo.

AND R1,R1,R2 // R1<---bit wise And of R1 and R2

Memory Access Memory access commands fall into two categories. First, as we

have just seen, arithmetic and logical commands are allowed to operate not only on

registers, but also on selected memory locations. Second, all computers feature ex-

plicit load and store commands, designed to move data between registers and mem-

ory. These memory access commands may use several types of addressing modes—

ways of specifying the address of the required memory word. As usual, different

computers offer different possibilities and different notations, but the following three

memory access modes are almost always supported:

m Direct addressing The most common way to address the memory is to express a

specific address or use a symbol that refers to a specific address, as follows:

60 Chapter 4

LOAD R1,67 // R1<---Memory[67]

// Or, assuming that bar refers to memory address 67:

LOAD R1,bar // R1<---Memory[67]

m Immediate addressing This form of addressing is used to load constants—

namely, load values that appear in the instruction code: Instead of treating the nu-

meric field that appears in the instruction as an address, we simply load the value of

the field itself into the register, as follows:

LOADI R1,67 // R1<---67

m Indirect addressing In this addressing mode the address of the required memory

location is not hard-coded into the instruction; instead, the instruction specifies a

memory location that holds the required address. This addressing mode is used to

handle pointers. For example, consider the high-level command x=foo[j], where

foo is an array variable and x and j are integer variables. What is the machine lan-

guage equivalent of this command? Well, when the array foo is declared and ini-

tialized in the high-level program, the compiler allocates a memory segment to hold

the array data and makes the symbol foo refer to the base address of that segment.

Now, when the compiler later encounters references to array cells like foo[j], it

translates them as follows. First, note that the jth array entry should be physically

located in a memory location that is at a displacement j from the array’s base ad-

dress (assuming, for simplicity, that each array element uses a single word). Hence

the address corresponding to the expression foo[j] can be easily calculated by add-

ing the value of j to the value of foo. Thus in the C programming language, for ex-

ample, a command like x=foo[j] can be also expressed as x=*(foo+j), where the

notation ‘‘*n’’ stands for ‘‘the value of Memory[n]’’. When translated into machine

language, such commands typically generate the following code (depending on the

assembly language syntax):

// Translation of x=foo[j] or x=*(foo+j):

ADD R1,foo,j // R1<---foo+j

LOAD* R2,R1 // R2<---Memory[R1]

STR R2,x // x<---R2

Flow of Control While programs normally execute in a linear fashion, one com-

mand after the other, they also include occasional branches to locations other than

the next command. Branching serves several purposes including repetition (jump

61 Machine Language

backward to the beginning of a loop), conditional execution (if a Boolean condition is

false, jump forward to the location after the ‘‘if-then’’ clause), and subroutine calling

(jump to the first command of some other code segment). In order to support these

programming constructs, every machine language features the means to jump to

selected locations in the program, both conditionally and unconditionally. In assem-

bly languages, locations in the program can also be given symbolic names, using

some syntax for specifying labels. Figure 4.1 illustrates a typical example.

Unconditional jump commands like JMP beginWhile specify only the address of

the target location. Conditional jump commands like JNG R1,endWhile must also

specify a Boolean condition, expressed in some way. In some languages the condition

is an explicit part of the command, while in others it is a by-product of executing a

previous command.

This ends our informal introduction to machine languages and the generic oper-

ations that they normally support. The next section gives a formal description of one

specific machine language—the native code of the computer that we will build in

chapter 5.

4.2 Hack Machine Language Specification

4.2.1 Overview

The Hack computer is a von Neumann platform. It is a 16-bit machine, consisting

of a CPU, two separate memory modules serving as instruction memory and data

memory, and two memory-mapped I/O devices: a screen and a keyboard.

High-level Low-level

// A while loop:

while (R1>=0) {

code segment 1

}

code segment 2

// Typical translation:

beginWhile:

JNG R1,endWhile // If R1<0 goto endWhile

// Translation of code segment 1 comes here

JMP beginWhile // Goto beginWhile

endWhile:

// Translation of code segment 2 comes here

Figure 4.1 High- and low-level branching logic. The syntax of goto commands varies from
one language to another, but the basic idea is the same.

62 Chapter 4

Memory Address Spaces The Hack programmer is aware of two distinct address

spaces: an instruction memory and a data memory. Both memories are 16-bit wide

and have a 15-bit address space, meaning that the maximum addressable size of each

memory is 32K 16-bit words.

The CPU can only execute programs that reside in the instruction memory. The

instruction memory is a read-only device, and programs are loaded into it using some

exogenous means. For example, the instruction memory can be implemented in a

ROM chip that is pre-burned with the required program. Loading a new program is

done by replacing the entire ROM chip, similar to replacing a cartridge in a game

console. In order to simulate this operation, hardware simulators of the Hack plat-

form must provide a means to load the instruction memory from a text file contain-

ing a machine language program.

Registers The Hack programmer is aware of two 16-bit registers called D and A.

These registers can be manipulated explicitly by arithmetic and logical instructions

like A=D-1 or D=!A (where ‘‘!’’ means a 16-bit Not operation). While D is used

solely to store data values, A doubles as both a data register and an address register.

That is to say, depending on the instruction context, the contents of A can be inter-

preted either as a data value, or as an address in the data memory, or as an address

in the instruction memory, as we now explain.

First, the A register can be used to facilitate direct access to the data memory

(which, from now on, will be often referred to as ‘‘memory’’). Since Hack instruc-

tions are 16-bit wide, and since addresses are specified using 15 bits, it is impossible

to pack both an operation code and an address in one instruction. Thus, the syntax

of the Hack language mandates that memory access instructions operate on an

implicit memory location labeled ‘‘M’’, for example, D=M+1. In order to resolve this

address, the convention is that M always refers to the memory word whose address is

the current value of the A register. For example, if we want to effect the operation

D ¼ Memory[516]� 1, we have to use one instruction to set the A register to 516,

and a subsequent instruction to specify D=M-1.

In addition, the hardworking A register is also used to facilitate direct access to

the instruction memory. Similar to the memory access convention, Hack jump

instructions do not specify a particular address. Instead, the convention is that any

jump operation always effects a jump to the instruction located in the memory word

addressed by A. Thus, if we want to effect the operation goto 35, we use one in-

struction to set A to 35, and a second instruction to code a goto command, without

specifying an address. This sequence causes the computer to fetch the instruction

located in InstructionMemory[35] in the next clock cycle.

63 Machine Language

Example Since the Hack language is self-explanatory, we start with an example.

The only non-obvious command in the language is @value, where value is either a

number or a symbol representing a number. This command simply stores the speci-

fied value in the A register. For example, if sum refers to memory location 17, then

both @17 and @sum will have the same effect: A<---17.

And now to the example: Suppose we want to add the integers 1 to 100, using re-

petitive addition. Figure 4.2 gives a C language solution and a possible compilation

into the Hack language.

Although the Hack syntax is more accessible than that of most machine lan-

guages, it may still look obscure to readers who are not familiar with low-level pro-

gramming. In particular, note that every operation involving a memory location

requires two Hack commands: One for selecting the address on which we want to

operate, and one for specifying the desired operation. Indeed, the Hack language

consists of two generic instructions: an address instruction, also called A-instruction,

and a compute instruction, also called C-instruction. Each instruction has a binary

representation, a symbolic representation, and an effect on the computer, as we now

specify.

4.2.2 The A-Instruction

The A-instruction is used to set the A register to a 15-bit value:

A-instruction: @value // Where value is either a non-negative decimal number

// or a symbol referring to such number.

value (v ¼ 0 or 1)

Binary: 0 v v v v v v v v v v v v v v v

This instruction causes the computer to store the specified value in the A register. For

example, the instruction @5, which is equivalent to 0000000000000101, causes the

computer to store the binary representation of 5 in the A register.

The A-instruction is used for three different purposes. First, it provides the only

way to enter a constant into the computer under program control. Second, it sets the

stage for a subsequent C-instruction designed to manipulate a certain data memory

location, by first setting A to the address of that location. Third, it sets the stage for

a subsequent C-instruction that specifies a jump, by first loading the address of the

jump destination to the A register. These uses are demonstrated in figure 4.2.

64 Chapter 4

C language Hack machine language

// Adds 1+...+100.

int i = 1;

int sum = 0;

While (i <= 100){

sum += i;

i++;

}

// Adds 1+...+100.

@i // i refers to some mem. location.

M=1 // i=1

@sum // sum refers to some mem. location.

M=0 // sum=0

(LOOP)

@i

D=M // D=i

@100

D=D-A // D=i-100

@END

D;JGT // If (i-100)>0 goto END

@i

D=M // D=i

@sum

M=D+M // sum=sum+i

@i

M=M+1 // i=i+1

@LOOP

0;JMP // Goto LOOP

(END)

@END

0;JMP // Infinite loop

Figure 4.2 C and assembly versions of the same program. The infinite loop at the program’s
end is our standard way to ‘‘terminate’’ the execution of Hack programs.

65 Machine Language

4.2.3 The C-Instruction

The C-instruction is the programming workhorse of the Hack platform—the in-

struction that gets almost everything done. The instruction code is a specification

that answers three questions: (a) what to compute, (b) where to store the computed

value, and (c) what to do next? Along with the A-instruction, these specifications

determine all the possible operations of the computer.

C-instruction: dest¼comp;jump // Either the dest or jump fields may be empty.

// If dest is empty, the ‘‘¼’’ is omitted;

// If jump is empty, the ‘‘;’’ is omitted.

comp dest jump

Binary: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

The leftmost bit is the C-instruction code, which is 1. The next two bits are not

used. The remaining bits form three fields that correspond to the three parts of the

instruction’s symbolic representation. The overall semantics of the symbolic instruc-

tion dest ¼ comp;jump is as follows. The comp field instructs the ALU what to com-

pute. The dest field instructs where to store the computed value (ALU output). The

jump field specifies a jump condition, namely, which command to fetch and execute

next. We now describe the format and semantics of each of the three fields.

The Computation Specification The Hack ALU is designed to compute a fixed set

of functions on the D, A, and M registers (where M stands for Memory[A]). The

computed function is specified by the a-bit and the six c-bits comprising the instruc-

tion’s comp field. This 7-bit pattern can potentially code 128 different functions, of

which only the 28 listed in figure 4.3 are documented in the language specification.

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose we

want to have the ALU compute D-1, the current value of the D register minus 1.

According to figure 4.3, this can be done by issuing the instruction 1110 0011 1000

0000 (the 7-bit operation code is in bold). To compute the value of D|M, we issue the

instruction 1111 0101 0100 0000. To compute the constant �1, we issue the in-

struction 1110 1110 1000 0000, and so on.

The Destination Specification The value computed by the comp part of the C-

instruction can be stored in several destinations, as specified by the instruction’s 3-bit

66 Chapter 4

dest part (see figure 4.4). The first and second d-bits code whether to store the com-

puted value in the A register and in the D register, respectively. The third d-bit codes

whether to store the computed value in M (i.e., in Memory[A]). One, more than one,

or none of these bits may be asserted.

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose

we want the computer to increment the value of Memory[7] by 1 and to also store the

result in the D register. According to figures 4.3 and 4.4, this can be accomplished by

the following instructions:

0000 0000 0000 0111 // @7

1111 1101 1101 1000 // MD=M+1

(when a=0)

comp mnemonic
c1 c2 c3 c4 c5 c6

(when a=1)

comp mnemonic

0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

D|A 0 1 0 1 0 1 D|M

Figure 4.3 The compute field of the C-instruction. D and A are names of registers. M refers to
the memory location addressed by A, namely, to Memory[A]. The symbols þ and � denote
16-bit 2’s complement addition and subtraction, while !, |, and & denote the 16-bit bit-wise
Boolean operators Not, Or, and And, respectively. Note the similarity between this instruction
set and the ALU specification given in figure 2.6.

67 Machine Language

The first instruction causes the computer to select the memory register whose address

is 7 (the so-called M register). The second instruction computes the value of Mþ 1

and stores the result in both M and D.

The Jump Specification The jump field of the C-instruction tells the computer what

to do next. There are two possibilities: The computer should either fetch and execute

the next instruction in the program, which is the default, or it should fetch and exe-

cute an instruction located elsewhere in the program. In the latter case, we assume

that the A register has been previously set to the address to which we have to jump.

Whether or not a jump should actually materialize depends on the three j-bits of

the jump field and on the ALU output value (computed according to the comp field).

The first j-bit specifies whether to jump in case this value is negative, the second j-bit

in case the value is zero, and the third j-bit in case it is positive. This gives eight

possible jump conditions, shown in figure 4.5.

The following example illustrates the jump commands in action:

Logic Implementation

if Memory[3]=5 then goto 100

else goto 200

@3

D=M // D=Memory[3]

@5

D=D-A // D=D-5

@100

D;JEQ // If D=0 goto 100

@200

0;JMP // Goto 200

d1 d2 d3 Mnemonic Destination (where to store the computed value)

0 0 0 null The value is not stored anywhere

0 0 1 M Memory[A] (memory register addressed by A)

0 1 0 D D register

0 1 1 MD Memory[A] and D register

1 0 0 A A register

1 0 1 AM A register and Memory[A]

1 1 0 AD A register and D register

1 1 1 AMD A register, Memory[A], and D register

Figure 4.4 The dest field of the C-instruction.

68 Chapter 4

The last instruction (0;JMP) effects an unconditional jump. Since the C-instruction

syntax requires that we always effect some computation, we instruct the ALU to

compute 0 (an arbitrary choice), which is ignored.

Conflicting Uses of the A Register As was just illustrated, the programmer can use

the A register to select either a data memory location for a subsequent C-instruction

involving M, or an instruction memory location for a subsequent C-instruction

involving a jump. Thus, to prevent conflicting use of the A register, in well-written

programs a C-instruction that may cause a jump (i.e., with some non-zero j bits)

should not contain a reference to M, and vice versa.

4.2.4 Symbols

Assembly commands can refer to memory locations (addresses) using either con-

stants or symbols. Symbols are introduced into assembly programs in the following

three ways:

m Predefined symbols: A special subset of RAM addresses can be referred to by

any assembly program using the following predefined symbols:

� Virtual registers: To simplify assembly programming, the symbols R0 to R15 are

predefined to refer to RAM addresses 0 to 15, respectively.

� Predefined pointers: The symbols SP, LCL, ARG, THIS, and THAT are predefined

to refer to RAM addresses 0 to 4, respectively. Note that each of these memory

j1

(out < 0)

j2

(out ¼ 0)

j3

(out > 0)
Mnemonic Effect

0 0 0 null No jump

0 0 1 JGT If out > 0 jump

0 1 0 JEQ If out ¼ 0 jump

0 1 1 JGE If outb 0 jump

1 0 0 JLT If out < 0 jump

1 0 1 JNE If out0 0 jump

1 1 0 JLE If outa 0 jump

1 1 1 JMP Jump

Figure 4.5 The jump field of the C-instruction. Out refers to the ALU output (resulting from
the instruction’s comp part), and jump implies ‘‘continue execution with the instruction
addressed by the A register.’’

69 Machine Language

locations has two labels. For example, address 2 can be referred to using either R2 or

ARG. This syntactic convention will come to play in the implementation of the virtual

machine, discussed in chapters 7 and 8.

� I/O pointers: The symbols SCREEN and KBD are predefined to refer to RAM

addresses 16384 (0x4000) and 24576 (0x6000), respectively, which are the base

addresses of the screen and keyboard memory maps. The use of these I/O devices is

explained later.

m Label symbols: These user-defined symbols, which serve to label destinations of

goto commands, are declared by the pseudo-command ‘‘(Xxx)’’. This directive

defines the symbol Xxx to refer to the instruction memory location holding the next

command in the program. A label can be defined only once and can be used any-

where in the assembly program, even before the line in which it is defined.

m Variable symbols: Any user-defined symbol Xxx appearing in an assembly pro-

gram that is not predefined and is not defined elsewhere using the ‘‘(Xxx)’’ com-

mand is treated as a variable, and is assigned a unique memory address by the

assembler, starting at RAM address 16 (0x0010).

4.2.5 Input/Output Handling

The Hack platform can be connected to two peripheral devices: a screen and a key-

board. Both devices interact with the computer platform through memory maps.

This means that drawing pixels on the screen is achieved by writing binary values

into a memory segment associated with the screen. Likewise, listening to the key-

board is done by reading a memory location associated with the keyboard. The

physical I/O devices and their memory maps are synchronized via continuous refresh

loops.

Screen The Hack computer includes a black-and-white screen organized as 256

rows of 512 pixels per row. The screen’s contents are represented by an 8K memory

map that starts at RAM address 16384 (0x4000). Each row in the physical screen,

starting at the screen’s top left corner, is represented in the RAM by 32 consecu-

tive 16-bit words. Thus the pixel at row r from the top and column c from the left

is mapped on the c%16 bit (counting from LSB to MSB) of the word located at

RAM[16384þ r � 32þ c=16]. To write or read a pixel of the physical screen, one

reads or writes the corresponding bit in the RAM-resident memory map (1 ¼ black,

0 ¼ white). Example:

70 Chapter 4

// Draw a single black dot at the screen's top left corner:

@SCREEN // Set the A register to point to the memory

// word that is mapped to the 16 left-most

// pixels of the top row of the screen.

M=1 // Blacken the left-most pixel.

Keyboard The Hack computer interfaces with the physical keyboard via a

single-word memory map located in RAM address 24576 (0x6000). Whenever

a key is pressed on the physical keyboard, its 16-bit ASCII code appears in

RAM[24576]. When no key is pressed, the code 0 appears in this location. In

addition to the usual ASCII codes, the Hack keyboard recognizes the keys shown in

figure 4.6.

4.2.6 Syntax Conventions and File Format

Binary Code Files A binary code file is composed of text lines. Each line is a se-

quence of sixteen ‘‘0’’ and ‘‘1’’ ASCII characters, coding a single machine language

instruction. Taken together, all the lines in the file represent a machine language

program. The contract is such that when a machine language program is loaded into

the computer’s instruction memory, the binary code represented by the file’s nth line

is stored in address n of the instruction memory (the count of both program lines and

memory addresses starts at 0). By convention, machine language programs are stored

in text files with a ‘‘hack’’ extension, for example, Prog.hack.

Assembly Language Files By convention, assembly language programs are stored

in text files with an ‘‘asm’’ extension, for example, Prog.asm. An assembly language

Key pressed Code Key pressed Code

newline 128 end 135

backspace 129 page up 136

left arrow 130 page down 137

up arrow 131 insert 138

right arrow 132 delete 139

down arrow 133 esc 140

home 134 f1–f12 141–152

Figure 4.6 Special keyboard codes in the Hack platform.

71 Machine Language

file is composed of text lines, each representing either an instruction or a symbol

declaration:

m Instruction: an A-instruction or a C-instruction.

m (Symbol): This pseudo-command causes the assembler to assign the label

Symbol to the memory location in which the next command of the program will be

stored. It is called ‘‘pseudo-command’’ since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)

Constants and Symbols Constants must be non-negative and are always written in

decimal notation. A user-defined symbol can be any sequence of letters, digits, un-

derscore (_), dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is

considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to

use uppercase for labels and lowercase for variable names.

4.3 Perspective

The Hack machine language is almost as simple as machine languages get. Most

computers have more instructions, more data types, more registers, more instruction

formats, and more addressing modes. However, any feature not supported by the

Hack machine language may still be implemented in software, at a performance cost.

For example, the Hack platform does not supply multiplication and division as

primitive machine language operations. Since these operations are obviously required

by any high-level language, we will later implement them at the operating system

level (chapter 12).

In terms of syntax, we have chosen to give Hack a somewhat different look-and-

feel than the mechanical nature of most assembly languages. In particular, we have

chosen a high-level language-like syntax for the C-command, for example, D=M

and D=D+M instead of the more traditional LOAD and ADD directives. The reader

72 Chapter 4

should note, however, that these are just syntactic details. For example, the + char-

acter plays no algebraic role whatsoever in the command D=D+M. Rather, the three-

character string D+M, taken as a whole, is treated as a single assembly mnemonic,

designed to code a single ALU operation.

One of the main characteristics that gives machine languages their particular flavor

is the number of memory addresses that can appear in a single command. In this

respect, Hack may be described as a ‘‘12 address machine’’: Since there is no room to

pack both an instruction code and a 15-bit address in the 16-bit instruction format,

operations involving memory access will normally be specified in Hack using two

instructions: an A-instruction to specify the address and a C-instruction to specify the

operation. In comparison, most machine languages can directly specify at least one

address in every machine instruction.

Indeed, Hack assembly code typically ends up being (mostly) an alternating

sequence of A- and C-instructions, for example, @xxx followed by D=D+M, @YYY fol-

lowed by 0;JMP, and so on. If you find this coding style tedious or even peculiar, you

should note that friendlier macro commands like D=D+M[xxx] and GOTO YYY can

easily be introduced into the language, causing Hack assembly code to be more

readable as well as about 50 percent shorter. The trick is to have the assembler

translate these macro commands into binary code effecting @xxx followed by D=D+M,

@YYY followed by 0;JMP, and so on.

The assembler, mentioned several times in this chapter, is the program responsible

for translating symbolic assembly programs into executable programs written in bi-

nary code. In addition, the assembler is responsible for managing all the system- and

user-defined symbols found in the assembly program, and for replacing them with

physical memory addresses, as needed. We return to this translation task in chapter

6, in which we build an assembler for the Hack language.

4.4 Project

Objective Get a taste of low-level programming in machine language, and get

acquainted with the Hack computer platform. In the process of working on this

project, you will also become familiar with the assembly process, and you will ap-

preciate visually how the translated binary code executes on the target hardware.

Resources In this project you will use two tools supplied with the book: An assem-

bler, designed to translate Hack assembly programs into binary code, and a CPU

emulator, designed to run binary programs on a simulated Hack platform.

73 Machine Language

Contract Write and test the two programs described in what follows. When exe-

cuted on the CPU emulator, your programs should generate the results mandated by

the test scripts supplied in the project directory.

m Multiplication Program (Mult.asm): The inputs of this program are the current

values stored in R0 and R1 (i.e., the two top RAM locations). The program computes

the product R0*R1 and stores the result in R2. We assume (in this program) that

R0>=0, R1>=0, and R0*R1<32768. Your program need not test these conditions, but

rather assume that they hold. The supplied Mult.tst and Mult.cmp scripts will test

your program on several representative data values.

m I/O-Handling Program (Fill.asm): This program runs an infinite loop that

listens to the keyboard input. When a key is pressed (any key), the program

blackens the screen, namely, writes ‘‘black’’ in every pixel. When no key is

pressed, the screen should be cleared. You may choose to blacken and clear

the screen in any spatial order, as long as pressing a key continuously for long

enough will result in a fully blackened screen and not pressing any key for

long enough will result in a cleared screen. This program has a test script (Fill.tst)

but no compare file—it should be checked by visibly inspecting the simulated

screen.

Steps We recommend proceeding as follows:

0. The assembler and CPU emulator programs needed for this project are available

in the tools directory of the book’s software suite. Before using them, go through

the assembler tutorial and the CPU emulator tutorial.

1. Use a plain text editor to write the first program in assembly, and save it as

projects/04/mult/Mult.asm.

2. Use the supplied assembler (in either batch or interactive mode) to translate your

program. If you get syntax errors, go to step 1. If there are no syntax errors, the

assembler will produce a file called projects/04/mult/Mult.hack, containing bi-

nary machine instructions.

3. Use the supplied CPU emulator to test the resulting Mult.hack code. This can

be done either interactively, or batch-style using the supplied Mult.tst script. If you

get run-time errors, go to step 1.

4. Repeat stages 1–3 for the second program (Fill.asm), using the projects/04/

fill directory.

74 Chapter 4

Debugging Tip The Hack language is case sensitive. A common error occurs when

one writes, say, @foo and @Foo in different parts of the program, thinking that both

commands refer to the same variable. In fact, the assembler treats these symbols as

two completely different identifiers.

The Supplied Assembler The book’s software suite includes a Hack assembler that

can be used in either command mode or GUI mode. The latter mode of operation

allows observing the translation process in a visual and step-wise fashion, as shown

in figure 4.7.

The machine language programs produced by the assembler can be tested in

two different ways. First, one can run the .hack program in the CPU emulator.

Figure 4.7 The visual assembler supplied with the book.

75 Machine Language

Alternatively, one can run the same program directly on the hardware, by loading it

into the computer’s instruction memory using the hardware simulator. Since we will

finish building the hardware platform only in the next chapter, the former option

makes more sense at this stage.

The Supplied CPU Emulator This program simulates the Hack computer platform.

It allows loading a Hack program into the simulated ROM and visually observing its

execution on the simulated hardware, as shown in figure 4.8.

Figure 4.8 The CPU emulator supplied with the book. The loaded program can be displayed
either in symbolic notation (as shown in this screen shot) or in binary code. The screen and the
keyboard are not used by this particular program.

76 Chapter 4

For ease of use, the CPU emulator enables loading binary .hack files as well as

symbolic .asm files. In the latter case, the emulator translates the assembly program

into binary code on the fly. This utility seems to render the supplied assembler un-

necessary, but this is not the case. First, the supplied assembler shows the translation

process visually, for instructive purposes. Second, the binary files generated by the

assembler can be executed directly on the hardware platform. To do so, load the

Computer chip (built in chapter 5’s project) into the hardware simulator, then load

the .hack file generated by the assembler into the computer’s ROM chip.

77 Machine Language

